
S. P A R T H A S A R A T H Y  1035 

/7= - k2p----L [IFPI erf (pzlFPI) exp (-IFvl2/k2)]g 
2 

+ k ~  - - - L  i ;  exp (-[FPl2/k2)d[IFPI erf (pzlFP[)]. (C-5) 

Since, on applying the limits the first term in the right- 
hand side of (C-5) vanishes, we have 

k2pl l ;  
17= ~ exp (-IFelZ/k 2) erf (p2[Fvl)dlFPI 

S kZplP2 IFPI exp [-(1/k2+p2)lFvlZ]dlFPI 
+ I~--Y- o 

- I 1 ± r l l  say (C-6) --,~ 7 ~ 7  , 
Now 

1 1 --0"2 COS 2 0 COS 2 0 I 1 
k 2 + p 2  = ,.r2tr2,.r~2 -~- 2 2 -- ~2~2,-r2 -- k02" L, 1~,2v N 0"20".77 ~, ltJ2~,N 

(C-7) 

If we put [FPI/k =y in (C-6) and use (C-7), we get 

plk3 exp (_y2) erf (p2ky)dy I7= - U -  ° 

P'PzkZk2 g ° 
+ 21/r c exp (-IFel2/k2)d(lFP[Z/k2o) 

pzk 3 1 plp2k2k 2 
- 2 l/re tan-l(pzk)+ 2l/rc ' (C-8) 

where equations (25) and (28) of part I have been used. 
If we substitute forp~, Pz, k and k0 from equations (C-l) 
and 26a, b), the equation (C-8) gives 

2 2 0"10" 2 COS 2 0 
/7= zc(1 _0"2 cos 2 8) 

0"1 o.2c°sO [ a l c ° s 0  ]. (C_9) 
+ ~z( l~2cos  2 8) 3/2 tan-1 V1 _0.2 cos 2 0 
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A method is described for the calculation of absorption corrections for Weissenberg and precession 
camera, and three- and four-circle diffractometer data. The method has been successfully applied' to 
a number of crystals. 

Introduction 

Several procedures for computation of absorption cor- 
rections have been described. Busing & Levy (1957) 
have first outlined a method suitable for high-speed 
computers and valid for crystals having no re-entrant 
angles between bounding planes. However, they did 
not derive the components along the crystal axes of the 
incident and diffracted beams for upper level reflexions. 

Such an extension for both Weissenberg and precession 
camera data has been given by Wells (1960). Here we 
propose an alternative procedure which makes exten- 
sive use of vector algebra and has also been applied to 
three- and four-circle cone diffractometers, since these 
are now widely used for collection of X-ray and neu- 
tron diffraction data. 

A FORTRAN program has been written for the 
CDC 1604 computer which in its present form calcul- 
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ates absorption corrections for three-circle cone dif- 
fractometer, equi-inclination Weissenberg and preces- 
sion camera data. 

For the evaluation of the absorption integral we use 
the numerical method of Gauss, as described by Busing 
& Levy (1957). The Gaussian quadrature constants are 
now also available for values o f m  > 16 (Davis & Rabin- 
owitz, 1956), and for inorganic crystals we have used 
values of m up to 32. The coordinates of the sampling 
points along the crystal axes and the associated weights 
are first evaluated. We then derive the components of 
the incident and diffracted beams for each reflexion. 
These are used to calculate the path length inside the 
crystal for each of the sampling points. Finally, the 
absorption correction is obtained as the weighted 
average over all the points. 

In the following paragraphs we only describe the 
derivation of the components of the incident and dif- 
fracted beams and the calculation of the path lengths. 
A description of the other steps can be found in Busing 
& Levy's article. 

The directions of the incident and diffracted rays 

Diffractometer data 

The four-circle cone diffractometer comprises four 
circles designated as ~, 2', £2 and 20 (Fig. 1), the Q 
circle being absent in the three-circle cone diffracto- 
meter. We shall assume that the a* axis has been set 

/~= O* 

X circle 

 ;oo. _/)L 

.0. circle 

Fig. 1. The four circles of the diffractometer. 

2 0 circle 

parallel to the ~0 axis of the diffractometer and that at 
rp=0 the c axis is parallel to the 2' axis. The crystal 
axes form a right-handed coordinate system and ~0 in- 
creases by clockwise rotation. 

(1) Three-circle cone diffractometer 
For each reflexion hkl, we choose unit vectors So and 

s in the directions of the incident and diffracted rays. 
Let D = s - So = 2(ha* + kb* +/c*) = Dla + D2b + O3c. 

The components D1, D2, and D3 are obtained by the 
transformation 

2g{h, k , / } =  {D1, D2, D3} (l) 

where g is the matrix 

a * . a *  a * . b *  a * . c * \  
b * . a *  b * . b *  b * . c *  ) 
c * . a *  c * . b *  c * . c *  

and the curled brackets indicate column vectors. 
Let T = s + s 0 =  Tla+ Tab+ T3c; T = 2  cos 0. 

We shall first determine the components of T and D. 
Once these are known we can obtain those of So and 
s with the relations 

So=(T-D) /2  (2) 
s =(T + D)/2 (Fig. 2). (3) 

The geometry of the three-circle cone diffractometer 
assures us that 

s .  a * =  - s 0 .  a* 
Tl=(s+s0) .  a*=0  . 

Further D .  T = 0, from which it follows that 

(ha* + kb* + lc*). (T2b + T3c) = kT2 + IT3 = O. 

Also TZ= T~bZ+ T]c2+2TET3bc cos c~=4 cos z0. 
Combining these last two equations, we find 

T~ = 4 cosEO/(b 2 + k2c2/l 2 - 2kbc cos ~/1) . 

This expression leaves the sign of T2 and, corre- 
spondingly, that of T3 undetermined. But a reversal of 
the sense of T corresponds simply to a substitution of 
- s  and -So for So and s respectively, which interchan- 
ges the incident and diffracted rays but leaves the to- 
tal path length unchanged. We can therefore resolve 
this ambiguity in T by arbitrarily choosing the posit- 
ive root of TE. 

We now have the components of D and T, from 
which we obtain those of So and s. 

D 

So 

Fig. 2. The definition of the vectors T and D. 
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The intensities of  h00 reflexions ( Z = 9 0  °) can be re- 
corded at any value of rp and consequently the for- 
mulae  for Tz and T3 derived above are not applicable. 
The vector T makes an angle of  1 8 0 - 9  with the e axis 
and therefore (Fig. 3) 

T . b= Tb cos (cz + 9) 
= - 2 b  cos 0 cos (e+fa) = - (T2b2+  T3bc cos 0 0 

T .  e = - Tc cos ~0 

= - 2 c  cos 0 cos (o = -(T2bc cos ~ +  T3c 2) . 

F rom these two equations T2 and T3 can be determined 
for a given value of ~p. 

(2) Four-circle cone diffractometer 
The addit ional  degree of freedom on a four-circle 

diffractometer allows the arbitrary setting of one of  the 
angles. This angle, which we choose to be ~0, has there- 
fore to be specified for every reflexion, just  as 9 had 
to be specified for h00 reflexions on the three-circle 
goniometer. The vector T is no longer perpendicular  
to a* and it is convenient to introduce a unit  vector 
T', perpendicular  to a* and coinciding with the Z axis 
after the rotation over q). We have" 

T ' =  rib+ r;c 
T ' .  b = b cos (c~ + (p)= T'2 bz + T;bc cos c~ 

¢ 

T ' .  c = c cos ~0 = T'2bc cos c~ + T3 c2 

f rom these equations we can determine T~ and T3. 
The crystal is brought  into the reflecting position by 

rotations around the Z and f2 axes. These rotations do 
not remove T'  from the horizontal  plane of  the f2 and 
20 circles. Therefore the vectors T, D, and T' are co- 
planar.  Hence the following relation exists between the 
direct space comgonents  of  the three vectors" 

T 1 T 2  T3 
Dj D2 D3 = 0 
0 Ti  T'3 

T 

Fig. 3. The three-circle d i f f rac tometer  at g = 90 °. 

Therefore TI(DzT'3-D3T'2)- TzD, T'3 + T3DITI=O. 
Also T .  D = 0 which gives Tlh + T2k + T31= 0 .  
Also T = 2  cos 0. 

Since the components  of  T'  and D are known the 
three components  of  T can be determined from these 
three equations. 

Photographic data 

(1) Equi-inclination Weissenberg technique 
The method employed for the equi-inclination Weis- 

senberg technique is very similar to that  for the three- 
circle cone diffractometer. 

The equi-inclination geometry is such that 
So • a =  - s .  a assuming the a axis to be aligned par- 

allel to the spindle axis of  the camera. 
This gives ( s+s0) .  a = 0 .  
Let T = s + So = ha* + t2b* + t3C*. 

Then T .  a = tl = 0. 
Also D = 2d* = 2(ha* + kb* +/c*). 
Since T .  D = 0  it follows that 

(ha* + kb* + i t* ) .  (tzb* + t~e*) = 0. 

Also T2='2t '*2"'2"*2+2t2t3b*c * c o s  Ct* 4 COS 2 0. ~2 U ~ • 3L., --~ 
The components  t2 and t3 can be derived in the same 

way as T2 and T3 were obtained for the three-circle 
cone diffractometer. With  formulae  (2) and (3) we de- 
termine the components  of  s, and So in reciprocal space. 
The corresponding components  in real space are ob- 
tained by applying t ransformation (1). 

(2) Precession camera 
We assume the precession axis to be parallel to a, 

so that 
So. a =  - a  cos/2, 

where/z is the precession angle. 

Let so = si°a * + sob * + s°c * 

So. a = s  ° =  - a  cos/z 

So. D = soD cos (90 + 0 ) =  - D  sin 0 = - 2  sin 2 0 

and 
So. D = s°D1 + s°D2 + s°D3 

o r  

s°2Dz+s°D3 = - 2  sin z 0 - s ° D 1  =a D1 c o s / z - 2  sin z 0. (4) 

Since 
so is a unit vector So. So = 1. (5) 

The components  D1, D2 and D3, and s o are known;  
therefore we have two equations (4) and (5) with two 
unknowns.  As equation (5) is quadrat ic  we obtain two 
sets of  values of  the components  s o and s o . These two 
sets correspond to the same reflexion on the film and 
the absorpt ion correction to be applied is the arith- 
metic mean of  the two individual corrections. The com- 
ponents of  s can be derived from the equation 

S = s o + D  , 
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Calculation of the absorption correction 
For each point in the crystal we have to determine the 
length of the path traversed inside the crystal by in- 
cident and diffracted rays. The distance Lq(r) from the 
point r, defined by the radius vector r = rla + r2b + r3c, 
to the face q (with Miller indices h~, kq, lq and reciprocal 
lattice vector d*) is given by Lq(r) = Bq - N q .  r = Bq - 
(hc1 + k c 2 +  lqr3)/d*q (Fig. 4) where Bq is the distance 
from a chosen origin inside or on the surface of the 
crystal to the bounding face q and Ne is a unit vector 
along the outward normal to face q. 

The distance travelled by the incident ray to the 
point r after crossing the plane of the face q is Pq(r)= 
L~(r)/(-So.  Nq). But the face through which the in- 
cident ray actually enters the crystal on its way to r is 
that for which Pq(r) has its smallest positive value. 
This is, then, the actual length Po(r) of the path, inside 
the crystal, of the incident ray to r. Similarly the 
distance P(r) travelled inside the crystal by the dif- 
fracted ray from r is the smallest positive value of 

Pa(r) = La(r)/(s. Nq) . 

The absorption factor for the scattering point r is 

a(r) = exp (--/4/'0(r)+/'(r)]) 

where/z is the linear absorption coefficient. 
The total absorption is obtained as the weighted 

average over all the sampling points. 

Experimental 

A number of tests were performed to check the pro- 
cedure: 
(1) A crystal of dimethyl trans-trans-muconate was 
mounted along b* on the three-circle cone diffracto- 
meter. The crystal has six faces and its dimensions are 
about 0.3 × 0.26 × 0.1 mm. The 0k0 reflexions were re- 
corded every 20 ° in ~0 with Cu Ka radiation (/.z = 9.17 
cm-1). The computation of the absorption corrections 
using a 10 × 10 × 8 grid took about 5 seconds per in- 
tensity reading. 

A similar experiment was done on a needle-shaped 
crystal of YFeO3 (/z= 879 cm -1 for Cu Kc~ radiation) 
mounted along the needle axis (c*) and having six 
faces and a cross section of 0.060 × 0.054 mm 2. The ab- 
sorption correction was calculated using a two-dimen- 
sional grid _1_ c* containing 32 × 32 points. The ob- 

8o 

/_,(r) Pq(r) 

Origin 

Fig. 4. The path length of the incident beam. 

served and corrected values for the 020 reflexion of 
dimethyl trans-trans-muconate and the 002 reflexion 
of YFeO3 are given in Table 1. Remaining variations 
of the intensity as a function of tp could be due to 
errors in the absorption coefficient, in the measured 
dimensions of the crystal, to secondary extinction, and 
to some extent to Renninger effects. 

Table 1. Observed and corrected intensities 
(counts sec -1) of  dimethyl trans-trans-muconate 

and YFeO3. 
The intensities were measured on the General Electric goniostat 

at X = 90 ° at 20 ° intervals in (0. 
Dimethyl trans-trans-muconate (020 reflexion) 

~bs Icorr 
0 ° 6436 7000 

20 6495 7080 
40 6467 7120 
60 6281 7090 
80 5852 7070 

100 5486 7200 
120 5979 7170 
140 6299 7080 
160 6415 7030 

YFeO3 (002 reflexion) 
ca lobs /corr 

0 ° 147 29400 
20 473 24510 
40 869 26560 
60 938 28250 
80 635 28450 

100 338 30130 
120 832 32250 
140 984 31620 
160 698 29960 

(2) A cylindrical crystal was approximated by defining 
36 bounding planes, 10 ° apart and parallel to the 
needle axis. For/ tR = 5 the absorption was computed at 
intervals of 5 ° in 0 up to 85 °. We used a two-dimen- 
sional grid perpendicular to the needle axis, which con- 
tained 256 sampling points. Absorption corrections 
computed agreed to better than ½~o with the values 
listed in International Tables for X-Ray Crystallography 
(1959). 

The program has also been applied successfully to 
Cu Ka diffractometer data on fl-chloro-trans-cinnamic 
acid (p = 36.2 cm -1) and to Co K~ and Kfl Weissenberg 
data collected on YFeO3 (p 647 and 1002 cm -t re- 
spectively). 

We are indebted to Mr. S. Filippakis and to Mr M. 
Eibschtitz for supplying intensity data on the dimethyl 
trans-trans-muconate and YFeO3 respectively, and to 
the Computer Division of the Applied Mathematics 
Department for the use of the CDC 1604 computer. 
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